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SUMMARY 

This paper discusses the nature of an approximate solution for t h e  hollow circular cylinder whose fixed 
ends are given a uniform relat ive axial  d isplacement  and whose cylindrical  surfaces are free from traction.  
We shall take the solution of this problem to be given by a super-position of the following two problems: 
problem I considers a finite length cylinder whose ends are given a relat ive axial  d isp lacement ,  but are no 
longer fixed; problem II removes the radial  d isplacement  at the end of the  cylinder obtained in problem I. 

1. Introduct ion.  

Due to the great difficulty in obtaining exact solutions of boundary value 
problems according to the theory of three-dimensional elasticity, there exist 
in the literature various approximate theories governing the deformation 
of solids. The differential equations of these theories are an approximation 
to the three-dimensional equations and are obtained with the help of certain 
simplifying assumptions. For bodies of revolution whose thickness is very 
small compared to the other dimensions, the approximate theories are 
called shell theories. Here, by making a priori assumptions regarding 
the distribution of stresses and displacements with the thickness of the 
shell, we are able to obtain two-dimensional equations which describe the de- 
formation in terms of quantities defined on the midsurface of the shell. 
But due to the fact that we are now dealing with middle surface force 
resultants and middle surface moments, we are able to satisfy the given 
boundary conditions only in a statically equivalent sense. Thus, for most 
problems, the approximate shell solution will differ markedly from the 
exact solution close to the boundary. 

This paper discusses the nature of an approximate solution for the 
hollow circular cylinder whose fixed ends are given a uniform relative 
axial displacement and whose cylindrical surfaces are free from traction. 
We shall take the solution of this problem to be given by a super-position 
of the following two problems: problem I considers a finite length cylinder 
whose ends are given a relative axial displacement, but are no longer 
fixed; problem II removes the radial displacement at the end of the cylinder 
obtained in problem I. 

The solution to problem I is straight-forward. The approximate solution 
of problem II is obtained by the application of the method of asymptotic 
integration to the three-dimensional equations of orthotropic elasticity. 
This method combines the applice':r of the boundary layer technique with 
an expansion of the stresses an, l displacements in terms of a small geo- 
metric parameter. No prior assumptions regarding the thickness variation 
of the stresses and displacements are made. As a result we obtain two 
different sets of systems of differential equations. The lowest order sys- 
tems correspond to the equations which govern the plane strain ortho- 
tropic elasticity theory and the isotropic shallow shell bending theory 

I! 11 and constitute a first approximation to the solution of problem II. The 
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plane strain theory gives a description close to the end of the shell and 
is termed the "boundary layer" solution, while the shell bending theory 
gives the "interior" solution. The higher order systems yield the higher 
order terms in the expansion and constitute thickness corrections. In the 
following, we will concern ourselves only with the solution of the first 
approximation 

2. F o r m u l a t i o n .  

The problem of a transversely isotropie (orthotropic) cylinder subjected 
to equal and opposite end loads P (see Fig. i) can be described by the 
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Fig i. Circular cylinder under compressive load P 

following equations: 
EQUILIBRIUM EQUATIONS':-" 
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CONSTITUTIVE EQUATIONS 

"For Nomenclature, see p. 353. 



A boundary layer theory for the end problem of a circular cylinder 345 

(Tr //t 

r Et  E t  (% + <Y0) 

%, = E ( % - v % )  - ~ ~r  

1 ~ t  
(3) 

1 
Vrz = o-- r~ 

t 

It is noted that the direction normal to the middle surface is the axis of 
elastic symmetry. 

For boundary conditions we will assume that the cylindrical surfaces are 
free from traction, 

= 0 ( r  = a + h )  ( 4 )  (3" r = Trz 

and that at the end we have 

u z : 7  K, u r = 0 (z = + c )  (5) 

Here, K is a constant which is chosen so that 
a+h 

~z(C,r)2~rrdr = - p (6) 

a- 

Conditions (4)and (5) approximate those usually found in an ordinary tes- 
ting machine. 

The solution to the problem thus formulated will now be obtained by a 
superposition of the solutions of the following two problems. The first 
problem consists of a cylinder with surface conditions (4) and on whose 
end we specify 

u z = 7 K ,  r =  = 0 ( z  = + e )  (7 )  

w h e r e  K is  d e t e r m i n e d  by  (6). T h e  s o l u t i o n  of  t h i s  p r o b l e m  is  e l e m e n t a r y  
and  is  g i v e n  by  

i = O, ~I z = - K E cTI r = ~ I  = ~'rz ~- 

I z I r 
u z = - K~, u r = Kv~ 

(8) 

Here, the superscript I refers to problem one and 

P c  (9) 
K = 4 ~rahE" 

For the second problem it will be convenient for us to shift the origin 
of the coordinate system to z =-c and to define a new dimensionless 
variable by 

z' - z + c (i0) 
L ' 

where L is a small but as yet undetermined length scale in the axial 
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direction. The second problem in terms of the variable z' now consists 
of a semi-infinite cylinder for whose cylindrical surfaces condition (4) 
holds and on whose end z' = 0 the following conditions hold: 

I I  I I  I 
u z = 0, ur = - ur (z '=0). (ii) 

We also prescribe that all stress components approach zero as z' becomes 
large, 

Stresses -- 0 a s  z '  - -  ~o. (12) 

From condition (12) it follows that the stress component o" z is self- 
equilibriating at z' = 0, 

a+h 

c r z ( o , r ) 2 7 r r d r  = 0. (13) 
a-h 

An a p p r o x i m a t e  s o l u t i o n  to p r o b l e m  II wil l  now be o b t a i n e d  by  the rf ie thod 
of a s y m p t o t i c  i n t e g r a t i o n  of e q u a t i o n s  (1), (2) and (3). One ob ta in s  a s  a 
r e s u l t  of the a p p l i c a t i o n  of th is  m e t h o d  the c o r r e c t  a p p r o x i m a t e  s y s t e m s  
of e q u a t i o n s  n e e d e d  to so lve  p r o b l e m  II. .Although the m e t h o d  has  b e e n  
previously used by Reiss [I], Johnson and Reissner [2] and Widera [3]  
for other cylinder problems, it is presented again in the analysis to follow 
in order to make the paper self-contained. 

3. Asymptotic integration of the elasticity equations 

We introduce additional dimensionless coordinates, stresses and dis- 
placements as follows: 

r-a 
P - h 

a (l_/22)O.Vr, Uz = a _/22 u, :E E(1 )~v~, (14) 

(Tr = (;Sr, crZ = OSz, (70 = CrS0, TrZ = (YSrz 

where (~ is a quantity having dimension of stress. In terms of these va- 
riables equations (i), (2)and (3) can be written in the following manner: 

+ 21( l+U)InSrz (l_v2)v~ =_ (i-/22)v,* 

k (l_y2)vl = l(Sz _ uSe- /2nSr) 
,u 

vr  
(l-U 2) ~ = so-us,,- VnSr 

(15) 

I +.I.,,] +.I.,] 

~ l + k p ) s J "  = - ~ l + X P ) s r J l  + k s o  
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Here, 

h L X = - -  ~ = _  .i 
a a 

(16) 

Et in = E 
Vn = ut ~ -  �9 2 ( l + v ) G t ,  

and  ( )" d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to p a n d  ( )I d i f f e r e n t i a t i o n  
w i t h  r e s p e c t  to  z ' .  

N e x t  we a s s u m e  t h a t  f o r  s u f f i c i e n t l y  s m a l l  )t, i . e . ,  X << 1, we c a n  e x -  
p a n d  e a c h  s t r e s s  a nd  d i s p l a c e m e n t  c o m p o n e n t  a s y m p t o t i c a l l y  in a p o w e r  
s e r i e s  in k�89 We m u s t  a l s o  c h o o s e  L ,  o r  r a t h e r  ~, a s  a f u n c t i o n  o f  ~.  
There are two possible choices El, 3]: 

( 1 )  /.~ = X�89 
(17) 

(2) /~ : X. 

F o r  /~ = X �89 (10) b e c o m e s  

Zl = Z+C 
= ~ (18) 

and the power series expansion for the stresses and displacements is given 
by 

s(i) Fk�89 i sCz' ,  p;X) --, z (g, p) 
i=O 

v(i) [•�89 i v C z ' , p ; X )  -~  r, Cg, P )  
i=0 

(19) 

F o r  the  c a s e  of  /~=)t, we s e t  

Zr = Z+C _ 

h 
(20) 

and use the following expansions: 

i=O 

v{z'.o; ),-,-, ~ ~")(n.o)[xt] ~ 
i=O 

(21) 

If ~=k �89 and expansions (19) are substituted into (15) we obtain, upon 
requiring that the equations be integrable with respect to p in a step- 
by-step manner, a series of systems of differential equations. The inte- 
grated form of the lowest order in k�89 system (from now on called the first 
approximation) is given by 

(o~ v~O) v~' ~2 v~ ~ v~ : ( ~ ) ,  = ( ~ )  - p 

sCo) . v?' + v[vl i)I - vlo, H @ c22) 
9 

s(~ vV o) + --z P z 
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S(1) ( i )  xr (o)IIi p 2 
ro = ~= (~) - [~ v 7  '~+ v ' : ' ~ ]  o + - ,  -~ 

s ~ ,  : s? (~) + [-,~("_,~ + ~ v':>' + vl ~ + 

+ V ( 1 )  I l l  ,0 2 _ V (~ i93 
z 2 6 

( 2 2 )  
c o n t '  d 

where V (~ (~) and V (I) (~) are the middle surface displacements and S~ I) (~) 
and S(~ (~) are the middle surface stresses. The relative orders of mag- 
nitude are indicated by the superscript. 

On substituting the expansions (21) into (15) and setting ~=~, we again 
obtain a series of systems of differential equations. These equations, 
though, are not integrable with respect to p in a step-by-step manner. 
The approximation equations can be written as 

t~ ~  ~ ~ ) ' +  

�9 . (2)17 t~, ~ Kn~[(1-,.,),,~ +ve.,,.. j 

r  = Mot~!2  ' + ~ , ~ : o ~ "  

t(~ = Nnt to~ )! +UnKnt to%2)"  

~ ' ~  ~ + ~ + ~ ~o + ~ T , ~ " '  = o 

( 2 3 )  

Here, 

b' t u ( l - u 2 )  
n 

K - 
at 1-u-2 YnY t 

2 
u n Knt  

Mnt  = 1 + - -  
1 - U  

2 
U n K nt 

, Nnt = u + l - z ]  

(24) 

It should be pointed out that in order to obtain (23) it was necessary 
for the stresses to be of the same order and for the displacement to be 
of order ~ relative to the stresses. A comparison of the first approximation 
equations (22) and (23) shows that the effect of transverse isotropy is 
present only in the equations associated with length scale h. 

The boundary conditions for the functions s (i) ~, p), v (i) (~,p)~t (t) (~, p) 
and w(i)07,P) are obtained by substituting (19) and (21) into equations (4), 
(ii) and (12). In particular, if the expansions for Vr and Vz are substituted 
into (ii), we obtain for the first two nonzero expansion coefficients 

v~l)(o, p) : v ( )  ) (o) 

~ )  (o, p) : 0 

v ~ ~  -- o 

(25) 

and 
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-/Y 
v~ ~ (o, p) = v$ ~ (o) = i_-:-;2 

- - v ~ + v (~ +~2)(o,p)= l _ v 2 p  (26) 

where the relation 

2 

v~2)({, O) = V~2) (~) + "i'Z~ r 2 

has  been  used .  This  r e l a t i o n  is ob ta ined  f r o m  the s e c o n d  a p p r o x i m a t i o n  
equa t ions  fo r  /a =1. Also ,  in o r d e r  that  d i m e n s i o n l e s s  q u a n t i t i e s  be 0(1) 
we have chosen 

P (28) 
4~ rah  

It fo l lows  f r o m  (25) and (26) tha t  the cond i t i ons  fo r  V~~ ~2 ) ( ~ ,  p) and 
W(z2)(%p) at  ~=~=0 a re  

v~O) v 
= - ~ - ~ 2  

V~ ~ = 0 
( 29 )  

and 

w (2) (o ,  p) = 0 
7, 

~4 2)(o,p) = - ~  p- 

v (o)m (o)~_ 2 } 
q- - - r  

(30) 

where we have set 

in order to admit only decay type solutions. 
Boundary condition (4) is to be satisfied by each term of the respective 

stress expansions. 
We will now consider the solution of (22) and (23) subject to the boun- 

dary conditions stated above. The solution of (22) will constitute the 
"interior" solution of problem II, while that of (23) will represent the 
"boundary layer" solution. 

4. Solution of the interior problem 

A p p l i c a t i o n  of (4) to equa t ions  (22) y i e l d s  

SO) = _ ~ v(o)m rz 2 --r 
( (1)n vV'~ + Vz = 0 

(31) 
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whe re  

S (2) = _ �89 V (1)III 
r --z (31) 

con t  t d v(o)IV + 4  T4V~ ~ = 0, 
r 

T 4 -  3 (1 -v  2) 
4 (32 )  

The form of the solution of (31), 4 subject to condition (12) is given by 

V~ ~ = e'~(A!cosT~ +A2sinT~). (33) 

Satisfaction of boundary conditions (29) by (33) yields 

V 
AI= A2 = - iLv2 �9 (34) 

The final expression for V (~ ([) is thus 
--r 

v(O) v 
r = - l_v2 (cos "/~ + sinq,~)e "~ .  (35) 

5. Solution of ~he boundary layer problem 

We now consider the solution of equations (23) subject to boundary con- 
ditions (30) and 

t(r ~ + 1 )  = t~z ~  + 1 )  = 0 ( 36 )  

Stresses -~ 0 as D --, 00. (37) 

The s e t  of e q u a t i o n s  (23), (30), (36) and (37) c o r r e s p o n d s  to the p r o b l e m  
of an o r t h o t r o p i c  s e m i - i n f i n i t e  s t r i p  u n d e r g o i n g  a g iv en  end d i s p l a c e m e n t .  
F o r  the c a s e  of an i s o t r o p i c  m a t e r i a l ,  the p r o b l e m  of the s e m i - i n f i n i t e  
s t r i p  has  p r e v i o u s l y  b e e n  s t u d i e d  by H o r v a y  [4] and J o h n s o n  and L i t t l e  
W~5]. A c l a s s  of end p r o b l e m s  for  the d y n a m i c  c a s e  has  b een  i n v e s t i g a t e d  by 

u and P l u n k e t t  [6 ] .  The m e t h o d  u s e d  in the l a t t e r  i n v e s t i g a t i o n  will  be 
u s e d  in the  f o l l o w i f g  to f o r m u l a t e  the so lu t i o n  of the p o s e d  p r o b l e m .  

L e t  us  s e e k  a so lu t i on  of (23) in the f o r m  

d$) p) = ao + 
(38)  

to (2) (1], p) = C anu2(P,  ~n)e  "Bn~l , 
l l : l  

where the ~n's (Re /3n >0) are the roots of a characteristic equation to 
be derived from the homogeneous boundary conditions (36), The constant 
a o and the complex constants an must be determined so as to satisfy the 
displacement boundary conditions (30). On substituting (38) into (23) we ob- 
tain for the symmetric solution 

u~(P;#n) = C(~n) c o s h  O~l(~n)P + c o s h  ot2(~n ) 

u~(Pz#n) = Bl(~n) C(#n)  sinh e l ( / 3n )O  + 

+ B2(~n) sinh a2(fin)P, (39) 
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and f o r  the a n t i s y m m e t r i c  s o l u t i o n  

ul(P,/3n) = C(~n) sLnh a l ( ~ n ) p  + s i n h a 2 ( / ~ n ) p  

n(pj~n)  = Bl(~n ) C(~n) e o s h a l ( ~ n ) P  + u 2 (40) 

+ B2(fln) cosha2( /~n)P ,  

H e r e ,  ~ and ~22 a r e  the r o o t s  of the e q u a t i o n  

4 2(In-U) u(1-v//t) 4 (41) 
" + 1----7 ~ + vt(1-~, ~) ~n = o 

and 

= 2 f l -V  / 
~kMnt + a i  ~2~n] 

Bi(~k) = (i = 1 ,2 ) .  (42) 

/3k~iEKnt/~n § {~nV) ] 

The  c o n s t a n t  C(fin) wil l  be d e t e r m i n e d  f r o m  b o u n d a r y  c o n d i t i o n s  (36). 
The  s y s t e m  of s t r e s s e s  c o r r e s p o n d i n g  to (38) c an  be o b t a i n e d  by  u se  of 

r e l a t i o n s  (23). The  r e s u l t i n g  e x p r e s s i o n s  can  be put  in the fo l l o w in g  f o r m :  

whe r e  

t (~ (rt, P) = ~ a a " r l l ( P ; ~ n ) e  "l~n~l 
z n--i 

.o n -~n 
t (~ (rL p) = E a n T22(P,/3n)e 
r I1--1 

n e -an t ( ~  = L a n r12(P;fi n) rz n =1 

t (~ (r/, p) = ~ a n r~a(p ; /3n )e 'en  
n= l  

k k k ~ 
7"11 = - ~k Mnt Ul + UnKnt U2 

(43) 

' r  22 

1-u  k" k 

(44) 

k + YnKnt u~" ~-k 3 = _ ~kNnt u 1 

A p p l i c a t i o n  of the h o m o g e n e o u s  b o u n d a r y  c o n d i t i o n s  (36) now y i e l d s  
+1 

(B2a2- /~nu) (%-B1/~n)  _ (t_an___~ha21- 

and 

(45) 

(B2~2-f iu  p) c o s h  a 2 
= ( s y m m e t r i c )  (46) 
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(B2~ 2- ~n v) sinh ~2 
= ( A n t i s y m m e t r i c )  (47) 

C(~n) E(I_/))B 1 eel-~nV~ s inh~ l  

2 2 On solving (41) for al ,a 2 and then subst i tut ing these  values  into equation 
(45), a c h a r a c t e r i s t i c  equation for the Bin's is obtained. F o r  an i so t ropic  
m a t e r i a l  (45) r e d u c e s  to 

sin 2~ • 2~ = 0. 

We now determine the constants a n introduced in the series solution (38) 
from the satisfaction of boundary conditions (30). Since the system of 
stresses (43) is a statically admissible stress field, the complementary 
energy principle which was modified for a complex stress field in E6~ can 
be applied, 

+I 

Re ~ {EwT)(o ,p)  - O~ St(~ (o,p) + 

( - 1-V2V p_ 1-V "~ ( Ev o,,o, + ,~ ,  + p )  - - 

+ Vl 1,I (o)~ p + V: O)II ( o ) ~ 2 } ) ~  ~t~~ P)}dp = O. 

_A simple substitution shows that the an'S must satisfy the following system 
of algebraic equations: 

QO 

E imna  n = b m, (49) 
m=1 

whe re  
+1 

m o  
lmn = ~-1 Ua d o (50) 

-1 
( a  = 1, 2) 

*1 
1~ m. (2) (o, p)dp (51) b m = T12~r 

and ( ) indicates the complex conjugate of ( ). The expression for 
w~2)(o,p) to be used in (51) is given by_ (30), 2. It can be shown by use of 
the Hermitian theorem introduced in E63 that 

+1 

5 m u: a0 0, E r l  ua ~r n (52) 
-1 

and hence ~ = l lmnl is a hermitian matrix. This hermitian property con- 
siderably simplifies the inversion of equation (49). 

6. Conclusion 

The use of thin shell theory to obtain solutions of certain appropriate 
elasticity problems introduces inaccuracies in the description of stresses 
and displacements near the edges of the shell. Even thick shell theories, 
which represent a more accurate approximation, fail to solve the problem 
of satisfying the boundary conditions exactly. It was Reiss Eli who first 
showed that this difficulty can be erased by superimposing on the shell 
(interior) solution a boundary layer solution which corresponds to the 
problem of the semi-infinite strip. 
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In this paper the problem of a cylinder under equal and opposite end 
loads with boundary conditions approximating those obtained in a testing 
machine was examined. The solution to this problem was obtained by a 
superposition of two problems: problem I consisted of the loaded cylinder 
with no end constraints while problem II removed the radial end displace- 
ment obtained in problem I. The solution to problem I consisted of the 
elementary strength of materials solution for the cylinder. The method of 
the asymptotic integration of the elasticity equations was used to obtain 
the shell bending and boundary layer (semi-infinite strip) equations needed 
to yield a first approximation to the solution of problem II. While the 
solution of the bending equations was straight-forward, a variational method 
was used to formulate the solution to the boundary layer problem. 

The solution of cylinder problem subject to end conditionsother than those 
discussed in this paper can be obtained by making use of the semi-infinite 

formulation presented by Johnson and Little FS]. strip LA 

N O M E N C L A T U R E  

a = mid-surface radius of cylinder 

c = half-height of cylinder 

E, v = in-plane elastic moduli 

Et, vt, G t = transverse elastic moduli 

Cz, co, cr = axial, circumferential, and normal strain 

Trz = transverse shear strain 

h = cylinder thickness 

O-z, or0, o- r = axial, circumferential, 

~'rz = transverse shear stress 

z, r = axial and radial coordinates 

Uz, u r = axial and normal displacements 

and n o r m a l  s t r e s s  
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